Groundwater is water located beneath the ground surface in soil pore spaces and in the fractures of rock formations. A unit of rock or an unconsolidated deposit is called an aquifer when it can yield a usable quantity of water. The depth at which soil pore spaces or fractures and voids in rock become completely saturated with water is called the water table. Groundwater is recharged from, and eventually flows to, the surface naturally; natural discharge often occurs at springs and seeps, and can form oases or wetlands. Groundwater is also often withdrawn for agricultural, municipal and industrial use by constructing and operating extraction wells. The study of the distribution and movement of groundwater is hydrogeology, also called groundwater hydrology.
Typically, groundwater is thought of as liquid water flowing through shallow aquifers, but technically it can also include soil moisture, permafrost (frozen soil), immobile water in very low permeability bedrock, and deep geothermal or oil formation water. Groundwater is hypothesized to provide lubrication that can possibly influence the movement of faults. It is likely that much of the Earth's subsurface contains some water, which may be mixed with other fluids in some instances. Groundwater may not be confined only to the Earth. The formation of some of the landforms observed on Mars may have been influenced by groundwater. There is also evidence that liquid water may also exist in the subsurface of Jupiter's moon Europa.[1]
Contents |
An aquifer is a layer of porous substrate that contains and transmits groundwater. When water can flow directly between the surface and the saturated zone of an aquifer, the aquifer is unconfined. The deeper parts of unconfined aquifers are usually more saturated since gravity causes water to flow downward.
The upper level of this saturated layer of an unconfined aquifer is called the water table or phreatic surface. Below the water table, where generally all pore spaces are saturated with water is the phreatic zone.
Substrate with low porosity that permits limited transmission of groundwater is known as an aquitard. An aquiclude is a substrate with porosity that is so low it is virtually impermeable to groundwater.
A confined aquifer is an aquifer that is overlain by a relatively impermeable layer of rock or substrate such as an aquiclude or aquitard. If a confined aquifer follows a downward grade from its recharge zone, groundwater can become pressurized as it flows. This can create artesian wells that flow freely without the need of a pump and rise to a higher elevation than the static water table at the above, unconfined, aquifer.
The characteristics of aquifers vary with the geology and structure of the substrate and topography in which they occur. Generally, the more productive aquifers occur in sedimentary geologic formations. By comparison, weathered and fractured crystalline rocks yield smaller quantities of groundwater in many environments. Unconsolidated to poorly cemented alluvial materials that have accumulated as valley-filling sediments in major river valleys and geologically subsiding structural basins are included among the most productive sources of groundwater.
The high specific heat capacity of water and the insulating effect of soil and rock can mitigate the effects of climate and maintain groundwater at a relatively steady temperature. In some places where groundwater temperatures are maintained by this effect at about 50°F/10°C, groundwater can be used for controlling the temperature inside structures at the surface. For example, during hot weather relatively cool groundwater can be pumped through radiators in a home and then returned to the ground in another well. During cold seasons, because it is relatively warm, the water can be used in the same way as a source of heat for heat pumps that is much more efficient than using air.
Groundwater makes up about twenty percent of the world's fresh water supply, which is about 0.61% of the entire world's water, including oceans and permanent ice. Global groundwater storage is roughly equal to the total amount of freshwater stored in the snow and ice pack, including the north and south poles. This makes it an important resource which can act as a natural storage that can buffer against shortages of surface water, as in during times of drought.[2]
Groundwater is naturally replenished by surface water from precipitation, streams, and rivers when this recharge reaches the water table.
Groundwater can be a long-term 'reservoir' of the natural water cycle (with residence times from days to millennia), as opposed to short-term water reservoirs like the atmosphere and fresh surface water (which have residence times from minutes to years). The figure shows how deep groundwater (which is quite distant from the surface recharge) can take a very long time to complete its natural cycle.
The Great Artesian Basin in central and eastern Australia is one of the largest confined aquifer systems in the world, extending for almost 2 million km2. By analysing the trace elements in water sourced from deep underground, hydrogeologists have been able to determine that water extracted from these aquifers can be more than 1 million years old.
By comparing the age of groundwater obtained from different parts of the Great Artesian Basin, hydrogeologists have found it increases in age across the basin. Where water recharges the aquifers along the Eastern Divide, ages are young. As groundwater flows westward across the continent, it increases in age, with the oldest groundwater occurring in the western parts. This means that in order to have travelled almost 1000 km from the source of recharge in 1 million years, the groundwater flowing through the Great Artesian Basin travels at an average rate of about 1 metre per year.
Certain problems have beset the use of groundwater around the world. Just as river waters have been over-used and polluted in many parts of the world, so too have aquifers. The big difference is that aquifers are out of sight. The other major problem is that water management agencies, when calculating the ‘sustainable yield’ of aquifer and river water, have often counted the same water twice, once in the aquifer, and once in its connected river. This problem, although understood for centuries, has persisted, partly through inertia within government agencies. In Australia, for example, prior to the statutory reforms initiated by the Council of Australian Governments water reform framework in the 1990s, many Australian States managed groundwater and surface water through separate government agencies, an approach beset by rivalry and poor communication.
The time lags inherent in the dynamic response of groundwater to development have generally been ignored by water management agencies, decades after scientific understanding of the issue was consolidated. In brief, the effects of groundwater overdraft (although undeniably real) may take decades or centuries to manifest themselves. In a classic study in 1982, Bredehoeft and colleagues[3] modelled a situation where groundwater extraction in an intermontane basin withdrew the entire annual recharge, leaving ‘nothing’ for the natural groundwater-dependent vegetation community. Even when the borefield was situated close to the vegetation, 30% of the original vegetation demand could still be met by the lag inherent in the system after 100 years. By year 500 this had reduced to 0%, signalling complete death of the groundwater-dependent vegetation. The science has been available to make these calculations for decades; however water management agencies have generally ignored effects which will appear outside the rough timeframe of political elections (3 to 5 years). Marios Sophocleous[3] argued strongly that management agencies must define and use appropriate timeframes in groundwater planning. This will mean calculating groundwater withdrawal permits based on predicted effects decades, sometimes centuries in the future.
As water moves through the landscape it collects soluble salts, mainly sodium chloride. Where such water enters the atmosphere through evapotranspiration, these salts are left behind. In irrigation districts, poor drainage of soils and surface aquifers can result in water tables coming to the surface in low-lying areas. Major land degradation problems of soil salinity and waterlogging result,[4] combined with increasing levels of salt in surface waters. As a consequence, major damage has occurred to local economies and environments.[5]
Four important effects are worthy of brief mention. First, flood mitigation schemes, intended to protect infrastructure built on floodplains, have had the unintended consequence of reducing aquifer recharge associated with natural flooding. Second, prolonged depletion of groundwater in extensive aquifers can result in land subsidence, with associated infrastructure damage – as well as (thirdly) saline intrusion.[6] Fourth, draining acid sulphate soils, often found in low-lying coastal plains, can result in acidification and pollution of formerly freshwater and estuarine streams.[7]
Another cause for concern is that groundwater drawdown from over-allocated aquifers has the potential to cause severe damage to both terrestrial and aquatic ecosystems – in some cases very conspicuously but in others quite imperceptibly because of the extended period over which the damage occurs.[8]
Groundwater is a highly useful and often abundant resource. However, over-use, or overdraft, can cause major problems to human users and to the environment. The most evident problem (as far as human groundwater use is concerned) is a lowering of the water table beyond the reach of existing wells. Wells must consequently be deepened to reach the groundwater; in some places (e.g., California, Texas and India) the water table has dropped hundreds of feet because of extensive well pumping. In the Punjab region of India, for example, groundwater levels have dropped 10 meters since 1979, and the rate of depletion is accelerating.[9] A lowered water table may, in turn, cause other problems such as groundwater-related subsidence and saltwater intrusion.
Groundwater is also ecologically important. The importance of groundwater to ecosystems is often overlooked, even by freshwater biologists and ecologists. Groundwaters sustain rivers, wetlands and lakes, as well as subterranean ecosystems within karst or alluvial aquifers.
Not all ecosystems need groundwater, of course. Some terrestrial ecosystems – for example, those of the open deserts and similar arid environments – exist on irregular rainfall and the moisture it delivers to the soil, supplemented by moisture in the air. While there are other terrestrial ecosystems in more hospitable environments where groundwater plays no central role, groundwater is in fact fundamental to many of the world’s major ecosystems. Water flows between groundwaters and surface waters. Most rivers, lakes and wetlands are fed by, and (at other places or times) feed groundwater, to varying degrees. Groundwater feeds soil moisture through percolation, and many terrestrial vegetation communities depend directly on either groundwater or the percolated soil moisture above the aquifer for at least part of each year. Hyporheic zones (the mixing zone of streamwater and groundwater) and riparian zones are examples of ecotones largely or totally dependent on groundwater.
Aquifer drawdown or overdrafting and the pumping of fossil water increases the total amount of water within the hydrosphere subject to transpiration and evaporation processes, thereby causing accretion in water vapour and cloud cover, the primary absorbers of infrared radiation in the Earth's atmosphere. Adding water to the system has a forcing effect on the whole Earth system, an accurate estimate of which hydrogeological fact is yet to be quantified.
Irrigated agriculture is a big business in Asia. It accounts for 70 per cent of the world’s irrigated land and 73 per cent of water used each year by the farming industry. As ageing large-scale surface irrigation schemes have become increasingly inefficient, and farmers have begun growing a wider range of crops requiring water on demand, the number of groundwater wells in India has exploded.[10] In 1960, there were fewer than 100,000 such wells; by 2006 the figure had risen to nearly 12 million.[11] In India, a possible solution to over-use of groundwater is emerging, known as 'groundwater recharge'. It involves capturing rainwater that would otherwise run-off, and using it to refill aquifers. Since 2000, the International Water Management Institute (IWMI) has been working with the Indian authorities to help improve the availability of water for agriculture in India. In 2006, India’s finance minister invited IWMI to submit policy recommendations based on its research on groundwater depletion. One of the key recommendations was to instigate a programme of recharging groundwater across the 65 per cent of India that has hard-rock aquifers. As a result, the Indian government allocated Rs 1800 crore (US$400million) to fund dug-well recharge projects (a dug-well is a wide, shallow well, often lined with concrete) in 100 districts within seven states where water stored in hard-rock aquifers has been over-exploited. These geological formations have a much lower capacity to store rainwater than alluvial areas with porous sand or clay rocks, hence being given priority. The money is sufficient to fund seven million structures to be installed on dug-wells to divert monsoon runoff. The structures include a de-siltation chamber, plus pipes to collect surplus rainwater and divert de-silted water from the chamber to the well.[12] As of the end of November 2009, funds amounting to Rs. 216.98 crore (including Rs. 199.98 crore as subsidy to beneficiaries and 17 crore for IEC/Capacity Building activities) had been released to the concerned states. Subsidies had been released to 566,637 beneficiaries.[13]
Subsidence occurs when too much water is pumped out from underground, deflating the space below the above-surface, and thus causing the ground to actually collapse. The result can look like craters on plots of land. This occurs because in its natural equilibrium state, the hydraulic pressure of groundwater in the pore spaces of the aquifer and the aquitard supports some of the weight of the overlying sediments. When groundwater is removed from aquifers by excessive pumping, pore pressures in the aquifer drop and compression of the aquifer may occur. This compression may be partially recoverable if pressures rebound, but much of it is not. When the aquifer gets compressed it may cause land subsidence, a drop in the ground surface. The city of New Orleans, Louisiana, is actually below sea level today, and its subsidence is partly caused by removal of groundwater from the various aquifer/aquitard systems beneath it. In the first half of the 20th century, the city of San Jose, California, dropped 13 feet from land subsidence caused by overpumping; this subsidence has been halted with improved groundwater management.
Generally, in very humid or undeveloped regions, the shape of the water table mimics the slope of the surface. The recharge zone of an aquifer near the seacoast is likely to be inland, often at considerable distance. In these coastal areas, a lowered water table may induce sea water to reverse the flow toward the land. Sea water moving inland is called a saltwater intrusion. Alternatively, salt from mineral beds may leach into the groundwater of its own accord.
Sometimes the water movement from the recharge zone to the place where it is withdrawn may take centuries (see figure above). When the usage of water is greater than the recharge, it is referred to as mining water (the water is often called fossil water because of its geologic age). Under those circumstances it is not a renewable resource.
Water pollution of groundwater, from pollutants released to the ground that can work their way down into groundwater, can create a contaminant plume within an aquifer. Movement of water and dispersion within the aquifer spreads the pollutant over a wider area, its advancing boundary often called a plume edge, which can then intersect with groundwater wells or daylight into surface water such as seeps and springs, making the water supplies unsafe for humans and wildlife. The interaction of groundwater contamination with surface waters is analyzed by use of hydrology transport models.
The stratigraphy of the area plays an important role in the transport of these pollutants. An area can have layers of sandy soil, fractured bedrock, clay, or hardpan. Areas of karst topography on limestone bedrock are sometimes vulnerable to surface pollution from groundwater. Earthquake faults can also be entry routes for downward contaminant entry. Water table conditions are of great importance for drinking water supplies, agricultural irrigation, waste disposal (including nuclear waste), wildlife habitat, and other ecological issues.[14]
In the US, upon commercial real estate property transactions both groundwater and soil are the subjects of scrutiny, with a Phase I Environmental Site Assessment normally being prepared to investigate and disclose potential pollution issues.[15] In the San Fernando Valley of California, Real estate contracts for property transfer below the Santa Susana Field Laboratory (SSFL) and eastward have clauses releasing the seller from liability for groundwater contamination consequences from existing or future water pollution of the Valley Aquifer.
Love Canal was one of the most widely known examples of groundwater pollution. In 1978, residents of the Love Canal neighbourhood in upstate New York noticed high rates of cancer and an alarming number of birth defects. This was eventually traced to organic solvents and dioxins from an industrial landfill that the neighbourhood had been built over and around, which had then infiltrated into the water supply and evaporated in basements to further contaminate the air. Eight hundred families were reimbursed for their homes and moved, after extensive legal battles and media coverage.
Another example of widespread groundwater pollution is in the Ganges Plain of northern India and Bangladesh where severe contamination of groundwater by naturally occurring arsenic affects 25% of water wells in the shallower of two regional aquifers. The pollution occurs because aquifer sediments contain organic matter (dead plant material) that generates anaerobic (an environment without oxygen) conditions in the aquifer. These conditions result in the microbial dissolution of iron oxides in the sediment and thus the release of the arsenic, normally strongly bound to iron oxides, into the water. As a consequence, arsenic-rich groundwater is often iron-rich, although secondary processes often obscure the association of dissolved arsenic and dissolved iron.
In November 2006, the Environmental Protection Agency published the Ground Water Rule in the United States Federal Register. The EPA was worried that the ground water system would be vulnerable to contamination from fecal matter. The point of the rule was to keep microbial pathogens out of public water sources [16] The 2006 Ground Water Rule was an amendment of the 1996 Safe Drinking Water Act.